语义搜索引擎:通过计算查询向量与文档向量之间的相似度,快速返回相关文档。
文档聚类:使用向量表达进行机器学习聚类算法,以发现数据中的模式或分组。
推荐系统:基于向量的近邻搜索可以推荐相似的研究或文献。
通过使用将结构化数据转化为向量,不仅提高了电力数据的可访问性和可操作性,还为构
建基于知识的大模型系统奠定了基础。这种技术的应用有助于加速研究成果的发现和创新,使得专
业的研究人员能够更有效地利用现有的知识资源。
4.2.2向量存储
调用b将先前的结构化数据全部转化为向量,此时大量的向量数据需要检索与存
储,因此需要选择一个数据库来存储。向量数据库是一种专门用于存储和管理向量数据的数据库。
它以向量作为基本数据类型,支持向量的存储、索引、查询和计算。向量是一组有序数,通常用于
表示具有多个属性的实体,比如文本、图像、音频等。在向量数据库中,每个向量都有一个唯一的
标识符,并且可以存储在一个连续的向量空间中。
根据存储数据量以及综合性能选择作为本项目的向量数据库存储数据。可
以存储和管理大规模的高维向量数据,并提供快速,准确的相似性搜索。不仅支持实时查询处理,
可以毫秒级别返回最相似的结果,还能支持快速添加和删除向量数据,并实现动态缩放。更重要的
是提供了直观的和友好的用户界面,如图4.2与图4.3所示,使得开发者可以轻松
地创建索引、存储向量数据以及执行查询操作。
w是一个向量搜索引擎数据库,它专注于连接和管理分散的数据,并通过语义链接来
解析和查询这些数据。它的主要功能包括语义搜索、数据链接和知识图谱构建。w的关键
特性包括机器学习集成,支持多种相似度度量,如欧氏距离和余弦相似度,以及可扩展性。
w的主要用途是帮助开发者构建智能应用程序,利用其强大的语义搜索和数据关联功能
从而实现更智能、更个性化的数据检索和推荐。其特点包括开源、高度可扩展、语义搜索功能强
大、支持多种数据类型和格式等。这使得w在处理大规模复杂数据集时表现出色,特别适
用于智能问答、搜索引擎和图像识别等领域。